
1

Binford ThermDetector 3000
Coal Mine Fire Detection System

Spring 2009

Team 3: ME5643 Mechatronics Dr. Vikram Kapila

Anthony Bonventre, Bo Deng, Luke Figueroa

2

Table of Contents
Introduction .. 3

Theory ... 4

Mechanical Design .. 7

Electronic Circuits ... 8

Warning System .. 8

Hall Effect Sensor .. 10

Bill of Materials ... 13

Prototype Cost .. 13

Mass Production Cost ... 14

Advantages & Disadvantages .. 14

Advantages of Design .. 14

Problems Encountered ... 15

Conclusion ... 18

Appendices .. 19

Code .. 19

Simulation Code .. 19

Navigation Code .. 21

Heat Map Software Code .. 28

Pictures ... 37

References .. 40

3

Introduction
 Coal mine fires, also known as coal seam fires, are burning deposits of coal. These fires burn

long after their surface fires are extinguished. They are either human-induced or naturally occurring.

For example, mining operating may ignite the coal. As far as natural occurrences are concerned, this

occurs during occasions such as lightning, forest fires, and spontaneous combustion as a result of heat

from the sun, or heat from water vapor. In the most extreme cases, coal fires can last for as long as 30

years.

 Coal mine fires are dangerous to human life. Toxic gases can be emitted such as Carbon

Monoxide (CO), Carbon Dioxide (CO2), Methane (CH4), Sulfur Dioxide (SO2), Nitrous Oxide (N2O), and

various Nitrogen Oxides (NOx). These gases affect the quality of life for the surrounding habitants, and

their habitations. Emitted aerosols can seep their way into waterways and farmland. Coal mine fires

burn the strata underneath the land, turning the layers into ash, creating unsafe living conditions. All in

all, the health of people is put at risk under these conditions. Coal mines fires affect the air, the water,

and the food supply. For industrially dependent nations that rely heavily on coal, such as China, the risk

of unsafe living conditions is especially true. One such coal mining town in Centralia, Pennsylvania had

fully evacuate due to a human-induced coal mine fire. The coal mine fire was caused by the burning of a

dump, affecting air quality. A young boy, by the name of Todd Domboski, fell into a hole due to the

collapse of underlying strata. The dangers that coal mine fires pose to human life should not be

underestimated

 A solution has been reached through the creation of the Binford ThermDetector 3000: Coal

Mine Fire Detection System. By utilizing analog light sensors, a digital IR thermometer, and a Hall-effect

sensor, it will detect dangerous levels of heat and changing magnetic fields across a coal mine area.

From the subsequent readings, the proper officials can act appropriately, by deciding to extinguish the

fire, or in the worst case scenario, evacuate an area in anticipation of collapse, or possible toxic fume

4

emission. The system has been outfitted with a warning system to alert officials, and local citizens when

heat and gas levels have exceeded appropriate amounts.

Theory
 The Binford ThermDetector 3000: Coal Mine Fire Detection System will have five systems in

place: a navigational system employing Parallax QTI light sensors; a thermal system using an infrared

thermometer; a warning system requiring the use of a 556 timer IC, LED, and Piezospeaker; a Hall-effect

Sensor; and a Bluetooth module to transmit readings to a nearby computer for the generation of a heat

map.

 The navigational system heavily requires the use of two Parallax QTI sensors. The sensors use a

QRD1114 infrared(IR) reflective sensor. When over dark regions, the

reflectivity is quite low; while over light regions, the reflectivity would

be quite high. Originally, the use of a GPS transmitter and receiver was

conceptualized; however GPS modules are rated for resolutions of 2

meters. Because of the relative scale of this project, other means had to

found. To resolve this, the uses of light sensors were employed. The

area over which the ThermDetector would cover is an area of 80cm x

156cm. This area was taped out on a pegboard, for means that will be explained later. The robot would

use a “lawn-mowing” action of sweeping the field. The robot will make quite simple movements, as it

will assist in plotting the heat map. The light sensors are programmed to observer for the border of the

area, which is shown by the use of black electrical tape. Without looking at the crudity of this exercise,

these actions were taken because of the inability to use a GPS module. Because of these setbacks, the

team has had to look for alternative means, and the steps toward those means have been properly

taken.

Figure 1: QTI Infrared Light

Sensor

5

 The thermal system relies on the use of the MLX90614 Infrared Thermometer Module (90°

FOV). The thermometer module is an intelligent non-contact temperature

sensor with a 90° field of view, and a serial interface for easy connection to

host microcontrollers. When objects are placed within the module’s zone of

detection, it can obtain accurate surface temperatures with the use of its

integrated ASIC and infrared sensitive thermopile detector. As important as

movement is to the project, the concept to taking temperature readings with

each point on the map is just as important. The thermometer is placed at a height of 1.5cm above the

surface, meaning that the system can take surface temperature readings in a 3cm radius, allowing for

very effective readings. When taking actual readings to demonstrate, cups of varying temperatures will

be placed under the pegboard. A pegboard was chosen to allow for even distribution of heat. Even

though the surface temperatures may vary by only a few degrees, coal mine fires burning several

hundred or thousand feet below the surface may have adverse effects by raising the temperature by as

little as a few degrees. The compounded readings of the traverse area will be sent to a remote

computer via Bluetooth to create a heat map.

Figure 3: Sample Heat Map

Figure 2: MLX90614 IR

Thermometer

6

 The warning system is composed of 2 main portions, an LED for visual

warning and a Piezo speaker for auditory warning. Because both portions are to

oscillate at the same frequencies, a 556 dual 16-pin timer is used to offload the

software task into a hardware task.

In addition to a search for various changes in surface temperature, a Hall-effect sensor

connected through an A/D converter is added. A Hall-effect sensor is a sensor that

outputs an analog voltage is proportion to the strength of the applied magnetic

field. As an alternative means of sensing the presence of coal mine fires, various

geophysical measurements have been created, one such way is by measuring

magnetism to determine changes in the magnetic characteristics of the adjacent rock caused by

fluctuations in heat. An Allego A1360 Linear Hall-effect sensor was used in connection with an AD0831

A/D Converted. Since the output of the Hall-effect sensor is an analog voltage, the A/D converter is used

so that a usable digital voltage signal is obtained.

Figure 4: Red LED

Figure 5: Piezo

Speaker

Figure 6: 556 Dual Timer Pin Map

Figure 7: A1360 Hall-

effect Sensor

7

 In order to wirelessly transmit data to a remote computer, a

Bluetooth transceiver was added to the ThermDetector. Parallax’s own

EmbeddedBlue Transceiver AppMod allows for advanced wireless

connectivity, by easily plugging into the BS2’s pins. This is a step above RF

transmission, as it allows full use with all Bluetooth enabled devices. In this

manner, data can be transmitted to a remote computer to generate the heat map of the traversed area.

Mechanical Design
A project of this scope would require a robot that can be built easily, as well as modified easily.

For this reason, various Lego pieces were used in

conjunction with the electrical, and mechanical parts.

Two Parallax (Futaba) continuous rotation servomotors,

one on each side of the ThermDetector for a 2 motor

drive, were mounted by use of Lego parts. The motors

were directly connected to the Board of Education in the proper pin locations. The right motor is

connected to Pin 14, while the left motor was connected to Pin 15. This allows to individual control,

while the position of the motors allows for central axis turning. The servomotor was modified to hold a

Lego axle, allowing for use of various sized gears. The servo head was detached, and epoxy was applied

to a small Lego gear and attached to the servo head. This allows for full swap-out ability when it comes

to choosing proper gear sizes for our needs

Treads were used for ease of motion. The treads are Lego treads, for nominal ease of use for

construction. A gear train was added to transfer motion from the servomotors to the two sides of the

ThermDetector. The full design of the ThermDetector is a compact chassis, which includes the Board of

Education upon which the BS2 Microcontroller is attached to, as well as the basic bread board to which

Figure 8: Bluetooth

Transceiver

Figure 9: Modified Servomotor

8

the light sensors and the temperature sensor is connected to. The

servos connect to their pins in a separate location. Connected to the

Board is a battery casing for four 1.5Volt Batteries. The Bluetooth module is attached to the board,

sticking vertically upward. Because of the high level of density of the ThermDetector, the electrical

components had to be created with ease of placement in mind.

Electronic Circuits

Warning System

 As mentioned earlier, the items used for this circuit are as follows: 1 LED (Red), 1 Piezo speaker,

one 556 dual timer IC, one AD5220 digital potentiometer.

 The 556 dual timer operates in astable mode. It outputs a square wave so that the voltage is

either high or low. A 556 dual timer is used in place of two 555 timers. It serves two purposed: to blick

the LEDD and to create a siren with the Piezospeaker. Each side of the 556 timers represents one 555

timer excluding the shared ground and Vdd pins. The LED and speaker were built as they would on a

555 timer. Below are the calculations for the LEDs, R1, R2, and C from the desired thigh, tlow, and desired

frequency values. The capacitance value was chosen to be 10μF so as to automatically bring down the

LED frequency and make the blinking visible. The value for thigh was chosen to be about 100ms so that it

would be visible and tlow to be 200ms.

����� � 0.693��
 � �� �
�����

0.693

�

100��

0.693 � 10,000��
� 14430

�� �� ������ �� �� 15�Ω

�!"# � 0.693$�% & ��'
 � �% �
�!"#

0.693

(�� �

200��

0.693 � 10,000��
(15,000 � 13860

�% �� ������ �� �� 10�Ω

Figure 10: Lego Treads

9

+ �
1

����� & �!"#

�
1

0.693
$�% & 2��'
�

1

$0.693'$10,000��'$10�Ω & 2 � 15�Ω
� 3.6,-

The frequency is roughly 3.6Hz, which is visible.

Since the speaker is only audible at higher frequencies (3200 Hz or above), the R1, R2, and C

values were chosen to create higher frequencies. Then Output B (Pin 9) is connected to Discharge A (Pin

1) with a 10kΩ so that the speaker frequency is controlled by another frequency. Thus, the speaker is

audible since it is at a higher frequency, but that speaker oscillates at a lower frequency. Physically

speaking, the speaker would be loud but would go on and off. Here, the speaker would oscillate at the

same rate as the LED because it is connected to the same output as the LED.

The R1, R2, and C were chosen based on the graph

on the right. C was chosen to be 0.01μF so that it would

oscillate quickly. To be in the 1kHz < f <10kHz ranger, R1 +

2R2 was chose to be slightly larger than 10kΩ. R1 and R2

were chosen to be 10kΩ and 5kΩ respectively. Figure 11: Capacitance vs. Frequency

10

Hall Effect Sensor

The Hall-effect Sensor used was an Allegro A1360 Linear Hall-effect Sensor. In order to find the

working range, a gaussmeter was built according the following diagram:

Figure 13: Gaussmeter Schematic

Figure 12: Warning System Schematic

11

With this, various voltages can be obtained from the Hall-Effect Sensor. Because the output of the Hall-

effect sensor is an analog voltage, this can be taken advantage of by connecting it to a voltmeter. Due

to the small sensitivity of the device, a range of 0.7 to 1.4 mV/G, the voltage changes went from 1.98V

when little or no magnetic field present, to a maximum value of 2.51V, and minimum value of 1.45V.

The proper poles of an applied magnetic field can be determined with the following equation:

. �
1000$/0 (/%'

�

Where:

V0= Voltage under the presence of little or no magnetic field

V1=Voltage measured from voltmeter under presence of a magnet.

B= Magnetic Flux Density, in Gauss

k= sensitivity of the Hall-effect sensor, taken to be 1.05mV/G

Taking two different readings we obtain:

.1 �
1000$/0 (/%1'

�
�

1000$1.98 (2.51'

1.05
� (504.762345��, 6�5�� 7�8� $9�:4��;�'

.< �
1000$/0 (/%<'

�
�

1000$1.98 (1.45'

1.05
� 504.762345��, 9�=�� 7�8� $7�����;�'

To obtain these values, t he magnet was placed as close as possible to the Hall-effect sensor in order to

get the largest magnitudes for the values. It is worthwhile to note that the values are the same in

magnitude, only differing in sign.

 Once those values have been obtained and noted down, it is time to

connect it to an A/D converter to take the previously analog voltages to obtain

digital values from them. Pins 1, 6, and 7 were connected to 3 Pins of the BS2.

Of the ADC0831, when Pin 1 is driven low A2D conversion is ready to happen,

Pin 6 is where the 8bit A2D output will come from, and Pin 7 is where the

Figure 14: Hall-effect

Sensor Pin Map

12

Clock signal from BS2 is received. Pins 5 and 8 are driven high to 5Volts. Pins 3 and 4 are driven low to

Vss. Pin 2 of the ADC0831 is where the analog input will be received. This analog input is the one that

will be digitized. Pin 2 of the ADC0831 is connected to Pin 2 of the Hall-effect sensor. Pin 1 of the Hall-

effect sensor will be driven high to 5 volts, while Pin 4 of the Hall-effect sensor will be driven low to Vss.

Pin 3 has no connection as Pin 3 is the terminal used for external filter capacity for bandwidth setting;

this has no relevance for the purposes that we are using the Hall-effect sensor for the project. Once all

the connections have been made, the Hall-effect sensor circuit was placed on a breadboard and

mounted so the proper angles required for full sensing are used.

Figure 15: Hall Effect Sensor Schematic

13

Figure 16: Basic Stamp Schematic

Bill of Materials

Prototype Cost

Bill of Materials: Prototype

Item Quantity Cost Total

Basic Stamp 2 Module 1 $49.00 $49.00

Board of Education Development Board (USB) 1 $69.99 $69.99

Parallax (Futaba) continuous rotation servomotors 2 $12.99 $25.98

QRD1114 infrared(IR) reflective sensor 2 $5.99 $11.98

MLX90614 Infrared Thermometer Module (90°

FOV)
1 $39.99 $39.99

 EmbeddedBlue Transceiver AppMod 1 $69.99 $69.99

556 Timer 1 $1.99 $1.99

Allegro A1360 Linear Hall-effect sensor 1 $2.57 $2.57

ADC0831 A2D converter 1 $5.99 $5.99

Lego Parts 1 $20.00 $20.00

Various electrical components (LEDs, Capacitors,
Resistors, wires, etc)

1 $30.00 $30.00

Battery holder 1 $1.99 $1.99

Pegboard Map 1 $20.00 $20.00

Total Cost $349.47

Table 1: Cost of One Prototype Unit

14

Mass Production Cost

Bill of Materials: Cost for Mass Production (100 units)

Item Quantity Cost Total

Basic Stamp 2 Module 1 $39.20 $39.20

Board of Education Development Board (USB) 1 $55.99 $55.99

Parallax (Futaba) continuous rotation servomotors 2 $11.69 $23.38

QRD1114 infrared(IR) reflective sensor 2 $5.99 $11.98

MLX90614 Infrared Thermometer Module (90° FOV) 1 $39.99 $39.99

 EmbeddedBlue Transceiver AppMod 1 $69.99 $69.99

556 Timer 1 $1.99 $1.99

Allegro A1360 Linear Hall-effect sensor 1 $1.60 $1.60

ADC0831 A2D converter 1 $4.79 $4.79

Lego Parts 1 $20.00 $20.00

Various electrical components (LEDs, Capacitors,
Resistors, wires, etc)

1 $30.00 $30.00

Battery holder 1 $1.99 $1.99

Total Cost $300.90

Table 2: Cost of One Mass Produced Unit

Advantages & Disadvantages

Advantages of Design

A main advantage of this system is t hat it is a cheap alternative to thermal graphic imaging and

remote sensing. In remote sensing, a satellite will detect the gas or heat emitted from coal mine fires.

However it may not be reliable during the daytime as the sun also produces heat. This robot will be able

to map out the territory more reliably during the daytime. Particularly, the robot serves locally as a

warning system. This is something that satellite systems will not be able to do without interaction with

a communication system.

The mechanical design of the ThermDetector is something to take notice of when considered

products of this nature. Because of the treads used in its design, with higher powered actuators, the

ThermDetector will be able to overcome many obstacles in its way. Slight inclines will be no problem, as

well as on point turning, as the system is able to do so when programmed to. All electrical components

15

are all in one position. In an interconnecting weave, the multiple subsystems are are placed on the

same breadboard to reduce cost and wasted space. Despite this, the system still does its intended duty.

A notable advantage is the Hall-effect sensor to sense change in magnetic properties of rock and

ground. Armed with this knowledge, this is another method of searching for possible heat sources.

Because many of the same methods have been employed when it comes to searching for coal mine

fires, allowing the use of an unorthodox method may be the one that effectively saves lives

Problems Encountered

The Basic Stamp microcontroller and its connecting parts are not perfect. Over the many

iterations and testing phases of the system, problems were encountered. These problems were all

either routed, or simply taken at face value.

One such problem, as mentioned earlier was the resolution of the GPS transceiver. Because of

the large resolution (approximately 2m), it could not be used properly in the scale of our area

(approximately 80cm x 156 cm). The GPS receiver would have been a larger problem than a solution.

The method that was taken instead was to use 3 QTI light sensors, which are quite accurate, in

conjunction with an absolute position map, to create a logic system simulating longitude and latitude.

The design of the map was as follows: the first line was a horizontal line of increasing gradient from near

black to just about gray, the line that followed was a solid line of a certain grayscale value, the third line

was the same as the first, the line that followed was a solid line of certain grayscale value higher than

the 2nd line. With this logic, and continuing for about 60+ lines, light sensor readings would be able to

give us values that would allow us to correctly map out the system’s position in the X and Y direction. A

bonus from using an absolute position system would allow us to plot the temperature map with greater

ease, as each point in 2D space would hold 3 values: X position, Y position, and temperature reading.

However, due to programming woes, this could not be done. The obtained map from Kinko’s was

printed with large imperfections, such as various lines not being the grayscale value not asked for,

16

streaks appearing on the lines from natural plotting techniques. Because of these problems, the

absolution position map was abandoned in favor for another possibility.

The 2nd possibility was to place a tight zig-zag pattern on the pegboard, which the robot would

theoretically follow for the area of the map. At this point, the light sensor, still being used in an analog

manner was creating many issues for us, such as creating conflicting cases, and not fitting in the proper

spot. The 2nd possibility narrowed down the use of light sensors from 3 to 2. This possibility failed

quickly when the turning logic in the program simply was not doing what it was told. Rather than waste

time by spending it in the loop of continually testing and reprogramming, the final possibility was

approached.

The course, as it runs now is a simple 80cm x 156cm

rectangular area bordered by black electrical tape, over a pegboard. As

mentioned early, the purpose of the pegboard will allow for heat to

disperse properly. The black electrical tape acts as the border, allowing

the system to know the boundaries of the land given to it to plot. Once

the light sensors see the border, the ThermDetector will turn around to

continue its scanning over the rest of the plot of land. This final

iteration works very well, as low amounts of error has been seen from

the numerous testing involved.

A gas sensor was originally planned for use. This idea was thoroughly followed through. A small

shaft of 50mm, and 6.35mm in diameter was obtained in order for the gas sensor to work. The shaft

was drilled through with 2mm diameter holes, placed 3mm apart center to center. This was done quite

beautifully, and all hopes were high. In order for the gas sensor to work an IR LED and an IR Detector

were placed on opposite ends of the shaft. With both components fitting exactly in the shaft, the ends

Figure 17: Absolute Map to be Used

for 1st Iteration of Navigation

System

17

were sealed with liquid electrical tape to ensure that no interference from the outside would make it

inside the shaft.

When it came to the testing portion of the sensor, it failed. No conclusive results were found

when tested using Nitrous Oxide, a clear gas that is non-toxic. A non-toxic gas was chosen because

when it came time to demonstrate the project, effectively risking the lives of fellow classmates is not

what this team wants to be known for. One of the foreseeable possible issues with a sensor such as this

is that if Gas A (toxic) is tested to have a certain value, how can we judiciously know that when we view

a value that point s to Gas A (toxic), that it’s not really Gas B (safe). Because of this problem, a

procedure such as alerting authorities would not help as it would be a severe waste of time and

resources. A sensor could still be produced to detect for a range of gases, but gases come in all shapes,

colors, and properties. A sensor that uses light wouldn’t work properly as many things can look like

other things. This was found when testing with Nitrous Oxide. The ambient air was giving a certain

value, while when the gas was applied; no change was seen in the result. Although that was only one

test, it really only points to 2 things, either the test should be re-done using different gases, or the gas

sensor was built incorrectly. The test, if done using different gases, such as those producing visible

impurities in the air, would be counter-productive, as it can still be seen by human eye, the point of

having such a feature on the ThermDetector would be beaten by human eyes. Adversely, the human

involvement in creating the gas sensor has effect as well. Since there were no other sample circuits to

Figure 18: Gas Sensor Originally Planned For Use

18

follow when creating this sensor, varying techniques were used. None producing a viable outcome.

Because of the time constraints this sensor was abandoned to work on other portions of the project.

Conclusion
 The Binford ThermDetector 3000 is a very versatile robot. Not only will it be able to traverse a

plot of land, but it can also wirelessly send data to a remote station to allow for quick upload, and

instant heat map creation. For the purpose of this project, taking that heat map and scaling it properly

over a fixed area in Pennsylvania (chosen for its high volume of coal mining towns), will allow us to fully

experience the scope of this machine.

 Being allowed to look for coal mine fires in a different way is quite important too, for when all

methods have failed it is important to think outside the box. What you have just witnessed here is

simply a prototype, not ready for the real world, but with added time, and concentration on future

iterations, the Binford ThermDetector 3000: Coal Mine Fire Detection System might just save a few lives.

 Due to the large amount of setbacks that came while building this machine, the team producing

it can readily say that it was not an easy project, but the final joy and bringing it all together was worth

it. From the culmination of the project, much can be taken away from this. One such lesson to be

learned is that all things that are designed are subject to fail. Through the course of completing this

project the design process has had to be started up over and over again in order to try and combat the

issues facing us. Not all things that you can design can be made. Before going forward with the testing

phase, all things in theory should work, but theory is always far from the applications in real world.

19

Appendices

Code

Simulation Code

 This code is used for showing that the ThermDetector is able to take temperature readings while

assigning an X and a Y value to a temperature reading.

' {$STAMP BS2}

' {$PBASIC 2.5}

'SIMULATION READINGS

'Had to be used since bluetooth could not be operated

'while the robot was moving, this simulates x and y values

'while taking the surface temperature and sending it to the

'computer to be graphed

' Set variables

bData VAR Byte

counter VAR Byte

countery VAR Byte

temp VAR Word

temperature VAR Word

tempL VAR temperature.LOWBYTE

tempH VAR temperature.HIGHBYTE

pec VAR Byte

w VAR Byte

x VAR Byte

y VAR Byte

z VAR Byte

'Set EEPROM for IR Thermometer

PEC0 DATA $00,$07,$0E,$09,$1C,$1B,$12,$15,$38,$3F,$36,$31,$24,$23,$2A,$2D

PEC1 DATA $70,$77,$7E,$79,$6C,$6B,$62,$65,$48,$4F,$46,$41,$54,$53,$5A,$5D

PEC2 DATA $E0,$E7,$EE,$E9,$FC,$FB,$F2,$F5,$D8,$DF,$D6,$D1,$C4,$C3,$CA,$CD

PEC3 DATA $90,$97,$9E,$99,$8C,$8B,$82,$85,$A8,$AF,$A6,$A1,$B4,$B3,$BA,$BD

PEC4 DATA $C7,$C0,$C9,$CE,$DB,$DC,$D5,$D2,$FF,$F8,$F1,$F6,$E3,$E4,$ED,$EA

PEC5 DATA $B7,$B0,$B9,$BE,$AB,$AC,$A5,$A2,$8F,$88,$81,$86,$93,$94,$9D,$9A

PEC6 DATA $27,$20,$29,$2E,$3B,$3C,$35,$32,$1F,$18,$11,$16,$03,$04,$0D,$0A

PEC7 DATA $57,$50,$59,$5E,$4B,$4C,$45,$42,$6F,$68,$61,$66,$73,$74,$7D,$7A

PEC8 DATA $89,$8E,$87,$80,$95,$92,$9B,$9C,$B1,$B6,$BF,$B8,$AD,$AA,$A3,$A4

PEC9 DATA $F9,$FE,$F7,$F0,$E5,$E2,$EB,$EC,$C1,$C6,$CF,$C8,$DD,$DA,$D3,$D4

PEC10 DATA $69,$6E,$67,$60,$75,$72,$7B,$7C,$51,$56,$5F,$58,$4D,$4A,$43,$44

PEC11 DATA $19,$1E,$17,$10,$05,$02,$0B,$0C,$21,$26,$2F,$28,$3D,$3A,$33,$34

PEC12 DATA $4E,$49,$40,$47,$52,$55,$5C,$5B,$76,$71,$78,$7F,$6A,$6D,$64,$63

PEC13 DATA $3E,$39,$30,$37,$22,$25,$2C,$2B,$06,$01,$08,$0F,$1A,$1D,$14,$13

20

PEC14 DATA $AE,$A9,$A0,$A7,$B2,$B5,$BC,$BB,$96,$91,$98,$9F,$8A,$8D,$84,$83

PEC15 DATA $DE,$D9,$D0,$D7,$C2,$C5,$CC,$CB,$E6,$E1,$E8,$EF,$FA,$FD,$F4,$F3

'Set Cosntants

therm CON 7

baud CON 84

xslave CON $35

'Initialize

counter = 1

countery = 1

'Wait for bluetooth module to initialize

PAUSE 1000

'Wait for connecter to be made

WaitForConnection:

 IF IN5 = 0 THEN WaitForConnection

DEBUG "Connection established",CR

Main:

PAUSE 300

 GOSUB ReadTemp 'Read the temperature

 DEBUG HOME, ? temp, CLREOL

 IF counter > 156 THEN 'Simulate x and y values using counters

 counter = 1

 countery = countery + 3

 ELSEIF counter < 156 THEN

 counter = counter + 3

 ELSEIF countery > 80 THEN

 END

 ENDIF

SERIN 0,84, [STR bData\1] 'Check for data being sent it

SEROUT 1, 84, [255, counter, countery, temp] 'Send data starting with a start signal of 255

GOTO Main

'---------READING SURFACE TEMPERATURE-------------

ReadTemp:

 SEROUT therm,baud,[0,"!TEMR",xslave,$07]

 SERIN therm,baud,1000,PECfail,[tempL,tempH,pec]

 z=0

 y = xslave<<1+0

 GOSUB calculateCRC

 y = $07

 GOSUB calculateCRC

21

 y = xslave<<1+1

 GOSUB calculateCRC

 y = tempL

 GOSUB calculateCRC

 y = tempH

 GOSUB calculateCRC

 IF z<>pec THEN PECfail

 temp = (temperature/100*2)-273

RETURN

calculateCRC:

 w=z^y

 READ w,z

RETURN

PECfail:

 DEBUG CRSRXY, 23, 3,CLREOL,CR

 DEBUG CRSRXY, 23, 4,CLREOL,CR

 DEBUG CRSRXY, 23, 5,"Fail",CLREOL,CR

 PAUSE 500

GOTO ReadTemp

'---

Navigation Code

 This code is used for the main motion of the robot.

' {$STAMP BS2}

' {$PBASIC 2.5}

'Set variables

timeR VAR Word

timeL VAR Word

counter VAR Word

turncounter VAR Byte

turndir VAR Bit

ycount VAR Byte

xcount VAR Byte

bdata VAR Byte

temp VAR Word

temperature VAR Word

tempL VAR temperature.LOWBYTE

tempH VAR temperature.HIGHBYTE

pec VAR Byte

w VAR Byte

x VAR Byte

y VAR Byte

z VAR Byte

adcBits VAR Byte

22

v VAR Byte

r VAR Byte

v2 VAR Byte

v3 VAR Byte

'Set Constants

Llight CON 4

Rlight CON 2

Clight CON 3

rwheel CON 14

lwheel CON 15

therm CON 7

baud CON 84

xslave CON $35

CS PIN 8

CLK PIN 9

DataOutput PIN 10

'Set EEPROM for IR Thermometer

PEC0 DATA $00,$07,$0E,$09,$1C,$1B,$12,$15,$38,$3F,$36,$31,$24,$23,$2A,$2D

PEC1 DATA $70,$77,$7E,$79,$6C,$6B,$62,$65,$48,$4F,$46,$41,$54,$53,$5A,$5D

PEC2 DATA $E0,$E7,$EE,$E9,$FC,$FB,$F2,$F5,$D8,$DF,$D6,$D1,$C4,$C3,$CA,$CD

PEC3 DATA $90,$97,$9E,$99,$8C,$8B,$82,$85,$A8,$AF,$A6,$A1,$B4,$B3,$BA,$BD

PEC4 DATA $C7,$C0,$C9,$CE,$DB,$DC,$D5,$D2,$FF,$F8,$F1,$F6,$E3,$E4,$ED,$EA

PEC5 DATA $B7,$B0,$B9,$BE,$AB,$AC,$A5,$A2,$8F,$88,$81,$86,$93,$94,$9D,$9A

PEC6 DATA $27,$20,$29,$2E,$3B,$3C,$35,$32,$1F,$18,$11,$16,$03,$04,$0D,$0A

PEC7 DATA $57,$50,$59,$5E,$4B,$4C,$45,$42,$6F,$68,$61,$66,$73,$74,$7D,$7A

PEC8 DATA $89,$8E,$87,$80,$95,$92,$9B,$9C,$B1,$B6,$BF,$B8,$AD,$AA,$A3,$A4

PEC9 DATA $F9,$FE,$F7,$F0,$E5,$E2,$EB,$EC,$C1,$C6,$CF,$C8,$DD,$DA,$D3,$D4

PEC10 DATA $69,$6E,$67,$60,$75,$72,$7B,$7C,$51,$56,$5F,$58,$4D,$4A,$43,$44

PEC11 DATA $19,$1E,$17,$10,$05,$02,$0B,$0C,$21,$26,$2F,$28,$3D,$3A,$33,$34

PEC12 DATA $4E,$49,$40,$47,$52,$55,$5C,$5B,$76,$71,$78,$7F,$6A,$6D,$64,$63

PEC13 DATA $3E,$39,$30,$37,$22,$25,$2C,$2B,$06,$01,$08,$0F,$1A,$1D,$14,$13

PEC14 DATA $AE,$A9,$A0,$A7,$B2,$B5,$BC,$BB,$96,$91,$98,$9F,$8A,$8D,$84,$83

PEC15 DATA $DE,$D9,$D0,$D7,$C2,$C5,$CC,$CB,$E6,$E1,$E8,$EF,$FA,$FD,$F4,$F3

'Initializations

turndir = 0

xcount = 0

ycount = 1

'Wait for bluetooth to initialize

PAUSE 1000

'Wait for connection to be made

WaitForConnection:

 IF IN5 = 0 THEN WaitForConnection

23

DEBUG "CONNECTED"

'Views incoming bluetooth data and waits for

'the start command "S" To be received

waitforstart:

SERIN 0,84, [STR bData\1]

DEBUG CLS, STR bData

IF bdata = "S" THEN

GOTO main

ENDIF

GOTO waitforstart

'Main operation for movement and measurement

main:

 GOSUB readingval 'Get Light Sensor Values

 GOSUB ReadTemp 'Get Temperature

 GOSUB Readhall 'Get Magnet Reading

 DEBUG HOME, ? temp, CLREOL

 'IF IN5 = 0 THEN GOSUB connect

 IF timel<1000 AND timer<1000 THEN 'Check for when both sensors detect white

 GOSUB forward 'Go forward

 xcount = xcount + 1 'Add 1 to x for location

 DEBUG HOME, ? xcount, CR, ?ycount

 '-----Conditionals for dealing with Navigation-------

 ELSEIF timel>1000 AND timer>1000 THEN

 IF turndir = 0 THEN

 GOSUB turnleft

 turndir = 1

 xcount = 0 'After turn reset x to 0

 ycount = ycount + 1 'Increase y by 1

 ELSEIF turndir = 1 THEN

 GOSUB turnright

 turndir = 0

 xcount = 0

 ycount = ycount + 1

 ENDIF

 ELSEIF timeL < 1000 AND timeR > 1000 THEN

 FOR counter = 1 TO 3

 PULSOUT lwheel, 1000

 PULSOUT rwheel, 800

 PAUSE 20

 NEXT

 ELSEIF timeL > 1000 AND timeR < 1000 THEN

 FOR counter = 1 TO 3

 PULSOUT rwheel, 500

 PULSOUT lwheel, 700

 PAUSE 20

24

 NEXT

 ENDIF

 '---------------------------------------

GOTO main

connect:

SEROUT 1,84,["con 00:1e:4c:ff:60:82",CR]

SERIN 0,84,[WAIT("ACK",CR)]

IF IN5 = 0 THEN GOTO connect

DEBUG "CONNEC TRY", CR

RETURN

bluetooth:

SERIN 0,84, [STR bData\1]

DEBUG CLS, STR bData

RETURN

'Use RCTIME to read light sensor values

readingval:

HIGH Llight

RCTIME Llight, 1, timeL

HIGH Rlight

RCTIME Rlight, 1, timeR

'DEBUG CLS, ? timeL, CR, ? timeR, CR

RETURN

Readhall:

 LOW CLK

 LOW CS

 PULSOUT CLK, 210

 SHIFTIN DataOutput,CLK,MSBPOST,[adcBits\8]

 HIGH CS

 v = 5 * adcBits / 255

 r = 5 * adcBits // 255

 v2 = 100 * r / 255

 v3 = 100 * r //255

 v3 = 10 * v3 / 255

 IF (v3 >= 5) THEN v2 = v2 + 1

 IF (v2 >=100) THEN

 v = v + 1

 v2 = 0

 ENDIF

 IF v>=2 OR NOT v2=98 THEN

 HIGH 12 ' triggers 556 timer circuit

 ELSE

 LOW 12

 ENDIF

RETURN

25

forward:

FOR counter= 1 TO 2

PULSOUT lwheel, 1000

PULSOUT rwheel, 500

PAUSE 20

NEXT

RETURN

turn:

FOR counter = 1 TO 3

PULSOUT rwheel, 500

PULSOUT lwheel, 500

PAUSE 20

NEXT

RETURN

turnreverse:

FOR counter = 1 TO 3

PULSOUT rwheel, 1000

PULSOUT lwheel, 1000

PAUSE 20

NEXT

RETURN

'********TURN LEFT CODE*********

turnleft:

 GOSUB forward

 GOSUB forward

 FOR turncounter = 1 TO 64

 GOSUB turn

 NEXT

 DO

 GOSUB readingval

 IF timeL < 1000 AND timeR < 1000 THEN

 GOSUB forward

 ELSEIF timeL < 1000 AND timeR > 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT lwheel, 1000

 PULSOUT rwheel, 800

26

 PAUSE 20

 NEXT

 ELSEIF timeL > 1000 AND timeR < 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT rwheel, 500

 PULSOUT lwheel, 700

 PAUSE 20

 NEXT

 ENDIF

 LOOP UNTIL timer > 1000 AND timel > 1000

 DO

 GOSUB readingval

 IF timeL > 1000 AND timeR > 1000 THEN

 GOSUB forward

 ELSEIF timeL > 1000 AND timeR < 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT lwheel, 1000

 PULSOUT rwheel, 800

 PAUSE 20

 NEXT

 ELSEIF timeL < 1000 AND timeR > 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT rwheel, 500

 PULSOUT lwheel, 700

 PAUSE 20

 NEXT

 ENDIF

 LOOP UNTIL timer < 1000 AND timel < 1000

RETURN

'********TURN RIGHT CODE*********

turnright:

 GOSUB forward

 GOSUB forward

 FOR turncounter = 1 TO 64

 GOSUB turnreverse

 NEXT

 DO

 GOSUB readingval

 IF timeL < 1000 AND timeR < 1000 THEN

 GOSUB forward

 ELSEIF timeL < 1000 AND timeR > 1000 THEN

27

 FOR counter = 1 TO 2

 PULSOUT lwheel, 1000

 PULSOUT rwheel, 800

 PAUSE 20

 NEXT

 ELSEIF timeL > 1000 AND timeR < 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT rwheel, 500

 PULSOUT lwheel, 700

 PAUSE 20

 NEXT

 ENDIF

 LOOP UNTIL timer > 1000 AND timel > 1000

 DO

 GOSUB readingval

 IF timeL > 1000 AND timeR > 1000 THEN

 GOSUB forward

 ELSEIF timeL > 1000 AND timeR < 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT lwheel, 1000

 PULSOUT rwheel, 800

 PAUSE 20

 NEXT

 ELSEIF timeL < 1000 AND timeR > 1000 THEN

 FOR counter = 1 TO 2

 PULSOUT rwheel, 500

 PULSOUT lwheel, 700

 PAUSE 20

 NEXT

 ENDIF

 LOOP UNTIL timer < 1000 AND timel < 1000

RETURN

'---Get temperature reading for IR Thermometer----

ReadTemp:

 SEROUT therm,baud,[0,"!TEMR",xslave,$07]

 SERIN therm,baud,1000,PECfail,[tempL,tempH,pec]

 z=0

 y = xslave<<1+0

 GOSUB calculateCRC

 y = $07

 GOSUB calculateCRC

 y = xslave<<1+1

 GOSUB calculateCRC

 y = tempL

28

 GOSUB calculateCRC

 y = tempH

 GOSUB calculateCRC

 temp = (temperature/100*2)-273

RETURN

calculateCRC:

 w=z^y

 READ w,z

RETURN

PECfail:

 DEBUG CRSRXY, 23, 3,CLREOL,CR

 DEBUG CRSRXY, 23, 4,CLREOL,CR

 DEBUG CRSRXY, 23, 5,"Fail",CLREOL,CR

 PAUSE 500

GOTO ReadTemp

'---

Heat Map Software Code

 This piece of code takes data readings from the ThermDetector and uses C code to create the

desired heatmap.

// Coal Mine Fire Detection System
// Binford ThermoDetect 3000
// Mechatronics
// Spring 2009
// Anthony Bonventre
// Luke Figueroa
// Bo Deng
// --------------------------------
// Bluetooth and Mapping Software
// Developed using assistance from:
// Dylan Vester from C# Playground
// and
// Badea Florin from CodeProject
// --------------------------------

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;
using System.Windows.Forms;
using System.IO.Ports;
using System.Threading;

namespace HeatMap
{

 public partial class Form1 : Form
 {
 //Set Serial Bluetooth Ports

29

 //SerialPort serialIn;
 SerialPort serialOut;
 //Set Thread for Receiving Data
 Thread receiveThread;
 int threads = 0;
 //Set private voids for functions
 private delegate void updateText(string s);
 private delegate void closeDel();
 private delegate void disconnectDel();
 private List<HeatPoint> HeatPoints = new List<HeatPoint>();
 //Initialize close and disconnect values to false
 bool closeRequested = false;
 bool disconnectRequested = false;
 int xdata;
 int ydata;
 int tempdata;

 public Form1()
 {
 //Initializations for labels and buttons
 InitializeComponent();
 label5.Text = "Not Connected";
 label7.Text = "Stopped";
 startRobo.Enabled = false;
 pauseRobo.Enabled = false;
 stopRobo.Enabled = false;

 }
 //------------------------//
 //-----BLUETOOTH CODE-----//
 //------------------------//

 //RecieveData used to get bytes from Bluetooth COM port and convert
to string//

 private void ReceiveData()
 {
 int getdata = 0;
 bool started = false;
 Random rRand = new Random();
 while (true)
 {

 try
 {
 //Send line to request data
 serialOut.WriteLine("");
 if (started)
 getdata++;

 //Get data as byte and convert to string for display
 string line = serialOut.ReadByte().ToString();

 //Display data in texbox
 dataIn.Invoke(new updateText(UpdateText), line);

30

 //Convert data to integer for comparison
 int datanum = Convert.ToInt32(line);

 //Check for start signal. If found, initialize data
capture
 if (datanum == 255)
 {
 dataIn.Invoke(new updateText(UpdateText),
"startbit");
 started = true;
 }

 //Since the signal is splite for each byte the program
loops three times to get the x,y, and temperature
 if (getdata == 1)
 {
 xdata = datanum * 6;
 dataIn.Invoke(new updateText(UpdateText), "x: " +
xdata);
 }
 if (getdata == 2)
 {
 ydata = datanum * 6;
 dataIn.Invoke(new updateText(UpdateText), "y: " +
ydata);
 }

 //After getting all three data points, add the to the
heat point structure for graphing
 if (getdata == 3)
 {
 tempdata = datanum;
 //tempdata = rRand.Next(0, 100);
 HeatPoints.Add(new HeatPoint(xdata, ydata,
tempdata));
 getdata = 0;
 started = false;
 dataIn.Invoke(new updateText(UpdateText), "t: " +
tempdata);
 }
 }
 catch
 {

 }
 }
 if (closeRequested)
 closeMe();
 if (disconnectRequested)
 this.Invoke(new disconnectDel(onDisconnect));
 }

 //When the program is disconnected close ports and disable controls

 private void onDisconnect()
 {

31

 //serialIn.Close();
 serialOut.Close();
 COMout.Enabled = true;
 COMin.Enabled = true;
 stopRobo.Enabled = false;
 startRobo.Enabled = false;
 pauseRobo.Enabled = false;
 connect.Enabled = true;
 label5.Text = "Disconected.";
 threads--;
 }

 //Function to update textbox to show that data was recieved
 //Necessary since the date is drawn from a seperate thread

 private void UpdateText(string s)
 {
 dataIn.Text += "Data In:" + s + "\r\n";
 dataIn.SelectionStart = dataIn.Text.Length;
 dataIn.ScrollToCaret();
 dataIn.Refresh();
 }

 //On close, stop all threads

 private void closeMe()
 {
 threads--;
 this.Invoke(new closeDel(this.Close));
 }

 //When the Connect Button is pressed, setup and connect to chose COM
ports

 private void connect_Click(object sender, EventArgs e)
 {
 string COMInPort = COMin.Text;
 string COMOutPort = COMout.Text;
 //serialIn = new SerialPort(COMInPort, 9600, Parity.None, 8,
StopBits.One);
 serialOut = new SerialPort(COMOutPort, 9600);
 serialOut.ReadTimeout = 1000;
 //serialIn.ReadTimeout = 1000;
 try
 {
 //if (!serialIn.IsOpen)
 //{
 // label5.Text = "Opening Inbound Port...";
 // serialIn.Open();
 //}
 if (!serialOut.IsOpen)
 {
 label5.Text = "Opening Outbound Port...";
 serialOut.Open();
 }
 label5.Text = "Ports Opened, Opening new thread for
listening.";

32

 receiveThread = new Thread(new ThreadStart(ReceiveData));
//Create new thread
 threads++;
 receiveThread.Start();
 label5.Text = "Connected."; //Start new thread

 //Enable/Disable necessary and unnecessary controls

 COMin.Enabled = false;
 COMout.Enabled = false;
 startRobo.Enabled = true;
 pauseRobo.Enabled = true;
 stopRobo.Enabled = true;
 connect.Enabled = false;
 }

 //Return error in message box

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 //Send Start command to robot
 private void startRobo_Click(object sender, EventArgs e)
 {
 try
 {
 serialOut.WriteLine("S"); //Send S for start command
 dataIn.Text += "Out: " + "Start Command" + "\r\n"; //show
that the command was sent in the text bos

 //Force text box to auto scroll
 dataIn.SelectionStart = dataIn.Text.Length;
 dataIn.ScrollToCaret();
 dataIn.Refresh();
 }

 //Return error if message cannot be sent
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 //See startRobo
 private void pauseRobo_Click(object sender, EventArgs e)
 {
 try
 {
 serialOut.WriteLine("P");
 dataIn.Text += "Out: " + "Pause Command" + "\r\n";
 dataIn.SelectionStart = dataIn.Text.Length;
 dataIn.ScrollToCaret();
 dataIn.Refresh();
 }
 catch (Exception ex)

33

 {
 MessageBox.Show(ex.Message);
 }
 }
 //See startRobo
 private void stopRobo_Click(object sender, EventArgs e)
 {
 try
 {
 serialOut.WriteLine("H");
 dataIn.Text += "Out: " + "Stop Command" + "\r\n";
 dataIn.SelectionStart = dataIn.Text.Length;
 dataIn.ScrollToCaret();
 dataIn.Refresh();
 serialOut.Close();
 connect.Enabled = true;
 stopRobo.Enabled = false;
 startRobo.Enabled = false;
 pauseRobo.Enabled = false;
 label5.Text = "Disconnected";

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 //---------------------------//
 //-----HEAT MAP CREATION-----//
 // Adapted from Dylan Vester //
 //---------------------------//

 private Bitmap CreateIntensityMask(Bitmap mapSurface, List<HeatPoint>
aHeatPoints)
 {
 // Initialize new surface to graph on
 Graphics DrawSurface = Graphics.FromImage(mapSurface);

 // Initialize surface as white
 DrawSurface.Clear(Color.White);

 // Takes each heat point from the structure and draws it on the
surface with a given radius
 foreach (HeatPoint DataPoint in aHeatPoints)
 {
 DrawHeatPoint(DrawSurface, DataPoint, 30);
 }

 return mapSurface;
 }

 //Takes data from above and initiates how to plot the data and how
adjust the gradient for the intensity
 private void DrawHeatPoint(Graphics Canvas, HeatPoint HeatPoint, int
Radius)
 {

34

 List<Point> CircumferencePointsList = new List<Point>();

 Point CircumferencePoint;

 Point[] CircumferencePointsArray;

 // Scale intensity to fit the data
 float fRatio = 1F / 50;
 int iIntensity = (HeatPoint.Intensity - ((HeatPoint.Intensity -
50) * 2));
 float fIntensity = iIntensity * fRatio;

 //Draw the gradient point as a circle by changing the angle and
drawing each part
 for (double i = 0; i <= 360; i += 10)
 {
 CircumferencePoint = new Point();

 CircumferencePoint.X = Convert.ToInt32(HeatPoint.X + Radius *
Math.Cos(ConvertDegreesToRadians(i)));
 CircumferencePoint.Y = Convert.ToInt32(HeatPoint.Y + Radius *
Math.Sin(ConvertDegreesToRadians(i)));

 CircumferencePointsList.Add(CircumferencePoint);
 }

 CircumferencePointsArray = CircumferencePointsList.ToArray();

 //Set gradient brush in order to draw the final gradient
 PathGradientBrush GradientShaper = new
PathGradientBrush(CircumferencePointsArray);

 ColorBlend GradientSpecifications = new ColorBlend(3);

 GradientSpecifications.Positions = new float[3] { 0, fIntensity,
1 };
 GradientSpecifications.Colors = new Color[3]
 {
 Color.FromArgb(0, Color.White),
 Color.FromArgb(HeatPoint.Intensity, Color.Black),
 Color.FromArgb(HeatPoint.Intensity, Color.Black)
 };

 // Pass off color blend to PathGradientBrush to instruct it how
to generate the gradient
 GradientShaper.InterpolationColors = GradientSpecifications;

 // Draw polygon (circle) using our point array and gradient brush
 Canvas.FillPolygon(GradientShaper, CircumferencePointsArray);
 }

 private double ConvertDegreesToRadians(double degrees)
 {
 double radians = (Math.PI / 180) * degrees;
 return (radians);
 }

35

 //Since the map is created using grayscal gradient, colorize this in
order to better visualize
 public static Bitmap Colorize(Bitmap Mask, byte Alpha)
 {
 //Initialize a new bitmap for the image to be applied to
 Bitmap Output = new Bitmap(Mask.Width, Mask.Height,
PixelFormat.Format32bppArgb);

 Graphics Surface = Graphics.FromImage(Output);
 Surface.Clear(Color.Transparent);

 ColorMap[] Colors = CreatePaletteIndex(Alpha);

 ImageAttributes Remapper = new ImageAttributes();
 Remapper.SetRemapTable(Colors);

 //Apply the surface to the bitmap
 Surface.DrawImage(Mask, new Rectangle(0, 0, Mask.Width,
Mask.Height), 0, 0, Mask.Width, Mask.Height, GraphicsUnit.Pixel, Remapper);

 return Output;
 }

 private static ColorMap[] CreatePaletteIndex(byte Alpha)
 {
 ColorMap[] OutputMap = new ColorMap[256];

 //Utilize a bitmap for applying the color, easily adjustable
 Bitmap Palette = (Bitmap)Bitmap.FromFile(@"C:\Documents and
Settings\Administrator\Desktop\Heat\colors2.bmp");

 //Replace all grayscale colors with corresponding colors
 for (int X = 0; X <= 255; X++)
 {
 OutputMap[X] = new ColorMap();
 OutputMap[X].OldColor = Color.FromArgb(X, X, X);
 OutputMap[X].NewColor = Color.FromArgb(Alpha,
Palette.GetPixel(X, 0));
 }

 return OutputMap;
 }

 //On button click, generate the map and display it
 private void button3_Click_1(object sender, EventArgs e)
 {
 Bitmap heatMapImage = new Bitmap(pictureBox3.Width,
pictureBox3.Height);

 heatMapImage = CreateIntensityMask(heatMapImage, HeatPoints);

 heatMapImage = Colorize(heatMapImage, 255);

 pictureBox3.Image = heatMapImage;

 //Save final image as a png to be utilized with Google Maps

36

 heatMapImage.Save(@"C:\wamp\www\HeatMap\1.png", ImageFormat.Png);
 button4.Enabled = true;
 }

 //Enable second window to show Google Maps integration
 private void button4_Click(object sender, EventArgs e)
 {
 Form2 Form2 = new Form2();
 Form2.Show();

 }

 }

 //Set structure for storing HeatPoints
 public struct HeatPoint
 {
 public int X;
 public int Y;
 public int Intensity;
 public HeatPoint(int iX, int iY, int bIntensity)
 {
 X = iX;
 Y = iY;
 Intensity = bIntensity;
 }
 }
}

37

Pictures

Figure 19: Top View of ThermDetector

Figure 20: Front View of ThermDetector

38

Figure 21: Side View of ThermDetector

Figure 22: Back View of the ThermDetector

39

Figure 23: Close-up of Warning system and Hall-effect Sensor Circuits

Figure 24: Close-up of Servomotor, Light Sensor, and Temperature Sensor Connections

40

References

1. www.Parallax.com

a. Used for obtaining descriptions about various parts

2. www.eoearth.org/article/coalfire_and_remote_sensing

a. Provided information concerning coal mine fires

3. www.wikipedia.org/wiki/coal_mine_fire

a. Useful information concerning coal mine fires.

4. ME5643: Mechatronics Lectures

a. Useful for basic circuit diagrams, and theory.

5. Parallax Basic Stamp Books by: Andy Lindsay

a. What’s a Microcontroller?

b. Basic Analog and Digital

c. Robotics with the Boe-Bot

d. Smart Sensors & Applications.

6. www.coolmagnetman.com/magmeter.htm

a. Basis for building Gaussmeter.

7. http://dylanvester.com/post/Creating-Heat-Maps-with-NET-20-(C-Sharp).aspx

a. For heat map development

8. www.codeproject.com

a. For serial Bluetooth assistance

